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Abstract. We establish a simple algebraic relationship between the energy eigenstates of the
rational Calogero–Sutherland model with harmonic oscillator and coulomb-like potentials. We
show that there is an underlyingSU(1, 1) algebra in both of these models which plays a crucial
role in such an identification. Furthermore, we show that our analysis is in fact valid for any
many-particle system in arbitrary dimensions whose potential term (apart from the oscillator or
the coulomb-like potential) is a homogeneous function of coordinates of degree−2. The explicit
coordinate transformation which maps the coulomb-like problem to the oscillator one has also been
determined in some specific cases.

1. Introduction

The rational Calogero–Sutherland model (CSM) describes a system ofN particles interacting
with each other via a long-range inverse square interaction [1–3] which are confined on a
line by a simple harmonic oscillator (SHO) potential. This model is exactly solvable and the
spectrum as well as the eigenfunctions are well known. Furthermore, it is known that the
rational CSM, with the SHO potential replaced by a coulomb-like interaction, is also exactly
solvable [4]. The remarkable common feature of both the models is that they reduce to the
usual harmonic oscillator or the coulomb-like problem in dimensions greater than one, once
the short distance correlations are factored out.

It is worth pointing out that the only two problems which can be solved for all partial waves
in dimensions greater than one are the usual harmonic oscillator and the coulomb problems.
Furthermore, a mapping relating the energy eigenvalues as well as the eigenfunctions of these
two models exists in any number of dimensions [5, 6]. It is then natural to enquire if there is
a mapping between the energy eigenvalues as well as eigenfunctions of the rational CSM and
the same quantities of the CSM with the coulomb-like interaction.

The purpose of this paper is to show that such a mapping between these two types of CSM
indeed exists. In particular, we show that both the models possess an underlyingSU(1, 1)
algebra with different realizations for the generators of the algebra, much akin to the usual
harmonic oscillator or the coulomb problem [5, 6]. Using this underlying algebra, we show that
the energy eigenvalues as well as the eigenfunctions of the rational CSM with the coulomb-like
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interaction can be obtained from the corresponding CSM oscillator problem. Our results are
valid for all types of rational CSM, namely, the CSM associated with the root structure ofAN ,
BN , CN , BCN andDN . Thus, we are able to generalize theAN type of CSM with coulomb-
like interaction [4] toBCN , BN , CN andDN type and hence show that all these models are
also exactly solvable. Thus we are adding new members to the family of the exactly solvable
one-dimensional many-body systems.

We also generalize these results to several higher-dimensional Calogero–Sutherland types
of models. In particular, we show that such a mapping is possible in any arbitrary dimension
provided the long-range many-body interaction of these models, like its one-dimensional
counterpart, is a homogeneous function of the coordinates with degree−2.

The plan of the paper is as follows. In section 2, the mapping between the SHO and the
coulomb-like CSM problems is established through an underlyingSU(1, 1) algebra which is
shown to exist in both the problems. In particular, in section 2.1, we discuss the underlying
SU(1, 1)algebra in the CSM with the coulomb-like potential. In section 2.2, a similar algebraic
structure of the many-body systems with the SHO potential is presented. The mapping
between the two is established in section 2.3. In section 3, we discuss the explicit coordinate
transformation which maps one problem onto the other. We find a set of coupled second-
order nonlinear differential equations, the solution of which determines the explicit form of
the coordinate transformation. We also solve this differential equation for some specific many-
particle systems. Discussions have been made in section 4 regarding the higher-dimensional
generalization of the mapping relating these two types of Hamiltonians. Finally, in section 5,
we summarize the results obtained in this paper and point out some of the open problems. In
appendix A, we present the energy spectrum and some of the eigenfunctions of the coulomb-
like CSM of BN type. In appendix B, we show that the Casimir operator of theSU(1, 1)
group is the angular part of the CSM Hamiltonian corresponding to the coulomb-like or the
oscillator problems. We also indicate here how the group property enables us to use the method
of separation of variables.

2. The mapping

2.1. Algebra of the coulomb-like problem

Let us consider the Hamiltonian (¯h = m = 1),

Hc = −1

2
4x + V (x1, . . . , xN)− α

x
(1)

where

x =
( N∑
i=1

x2
i

)1/2

4x =
N∑
i=1

∂2

∂x2
i

. (2)

The coordinates of theN particles are denoted byxi in (2). We fix the convention that all
Roman indices run from 1 toN while all Greek indices run from 1 toN ′. The many-body
interactionV (x) in (1) is a homogeneous function of degree−2. In particular,

N∑
i=1

xi
∂V

∂xi
= −2V. (3)

It may be noted that the potential termV of the rational CSM ofAn type,

VAn({xi}) =
g

2

∑
i<j

(xi − xj )−2 (4)
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indeed satisfies this condition. In fact the long-range interaction terms of the rationalBCN ,
BN , CN ,DN type CSM also satisfy this condition. In particular,

VBCN (g1, g2, g3) = g1

2

∑
i<j

[(xi − xj )−2 + (xi + xj )
−2] + g2

∑
i

x−2
i +

g3

2

∑
i

x−2
i (5)

VBn(= VBCn(g1, g2, g3 = 0)), VCn(= VBCn(g1, g2 = 0, g3)) andVDn(= VBCn(g1, g2 = 0,
g3 = 0)) have the property (3). Unless mentioned otherwise, throughout this paper we
consider arbitraryV (x) satisfying the property (3) even though schematically we write it as
V (x).

Let us define the operatorsk1, k2, k3 as

k1 = 1

2
(x4x − 2xV (x) + x)

k2 = i

(
N − 1

2
+
∑
i

xi
∂

∂xi

)
k3 = −1

2
(x4x − 2xV (x)− x). (6)

It is easily shown that these three operators constitute aSU(1, 1) algebra, namely,

[k1, k2] = −ik3 [k2, k3] = ik1 [k3, k1] = ik2. (7)

Let us emphasize again that theSU(1, 1) algebra as given here in terms of the generatorsk1,
k2 andk3 is valid for anyV satisfying equation (3). We now show that the eigenvalue equation
for the Hamiltonian as given by equation (1) can also be written as an eigenvalue equation for
the generator ofSU(1, 1). To see this, note the following identity:

(k1 + k3)Hc = − 1
2(k1− k3)− α. (8)

Now, following the standard procedure [7] and with the help of equation (8), the eigenvalue
equation

Hc|N,M〉 = EM |N,M〉 (9)

can be written as[
k3− α√−2EM

]
eik2θM |N,M〉 = 0 (10)

where the functionθM is defined by

coshθM = 1− 2EM√−8EM
sinhθM = − 1 + 2EM√−8EM

. (11)

Thus, the eigenvalue equation forHc has been transformed into an eigenvalue equation for the
generatork3. The eigenvector|N,M〉 with the eigenvalueEM in (9) is defined to characterize
theN particle state withM as the principal quantum number. In general,M can be expressed
as a sum of different non-negative integers to characterize the degenerate states, depending on
the particular form ofV (x). Even though we do not address here the question of degeneracy
of the many-body system, it should be noted that the eigenvectors|N,M〉 do not span the
whole eigenspace ofHc. In particular, the eigenstates|N,M〉 transform under the unitary
irreducible representations ofSU(1, 1) labelled by a real constantφ(< 0), whereφ is related
to the eigenvalueq of the Casimir operator asq = φ(φ + 1). Thus,|N,M〉 belongs to the
SU(1, 1) orbit of the ground state|N,M;φ = φ0〉, whereφ0 denotes the minimum admissible
value ofφ. As shown in appendix B, the energy eigenvalueEM is determined in terms of the
Casimir operator ofSU(1, 1) as

Em,q = −α
2

2

[
m +

1

2
+

(
q +

1

4

)1/2]−2

(12)

wherem is a non-negative integer andq is the eigenvalue of the Casimir operator.
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2.2. Algebra of the oscillator problem

Let us consider the Hamiltonian (¯h = m = 1),

Hsho= 1
2(−4y + y2 + 2V (y)) (13)

where

4y =
N ′∑
µ=1

∂2

∂y2
µ

y2 =
N ′∑
µ=1

y2
µ. (14)

The potentialV (y) is again a homogeneous function ofy with degree−2, i.e. it satisfies a
condition analogous to equation (3).

We now define three operatorsk1, k2 andk3 for the oscillator as follows:

k1 = 1

4
(4y + y2 − 2V (y))

k2 = i

4

(
N ′ + 2

∑
µ

yµ
∂

∂yµ

)
k3 = 1

2
Hsho. (15)

Note that these three operators again constitute aSU(1, 1) algebra and the Hamiltonian is
proportional tok3. As a result, the eigenvalue equation of the Hamiltonian is also the eigenvalue
equation for the operatork3. In particular,

Hsho|N ′,M ′〉 = eM ′ |N ′,M ′〉 → k3|N ′,M ′〉 = 1
2eM ′ |N ′,M ′〉. (16)

The eigenvector|N ′,M ′〉 with the eigenvalueeM ′ in equation (16) is defined, as in the case
of the coulomb problem in section 2.1, to characterize theN ′ particle state withM ′ as the
principal quantum number. The eigenstates|N ′,M ′〉 transform under the unitary irreducible
representations ofSU(1, 1), labelled by a real constantφ′(<0), whereφ′ is related to the
eigenvalueq of the Casimir operator as,q = φ′(φ′ + 1). Thus, |N ′,M ′〉 do not span the
whole eigenspace ofHsho. Instead, it belongs to theSU(1, 1) orbit of the ground state
|N ′,M ′;φ′ = φ′0〉, whereφ′0 denotes the minimum admissible value ofφ′. We do not address
the question of degeneracy in this paper. In appendix B, we again show that the energy
eigenvalueeM ′ is determined in terms of the Casimir operator ofSU(1, 1) as

em′,q = 2m′ + 1 + (1 + 4q)1/2 (17)

wherem′ is a non-negative integer andq is the eigenvalue of the Casimir operator. We show in
appendix B that different representations of the Casimir operator in terms of the generators (6)
and (15) correspond to the angular part ofHc andHsho, respectively (apart from a constant).

2.3. The relationship

In order to obtain the relationship between the eigenspectrum of the two CSM problems, we
assume that the potentialsV (x) andV (y) have the same functional dependence on thex and
they coordinates, respectively. However, the strength of the interaction may be different in
the two cases which we do not mention here explicitly in order to avoid notational clumsiness.

We have considered two different representations for the generators of theSU(1, 1)
algebra, given by (6) and (15). However, in both cases one is using the same positive discrete
series representation of theSU(1, 1) algebra. Furthermore, in this representation,k3 is taken
to be diagonal in both cases. Thus, the isomorphism between the two sets of eigenvectors
corresponding to two different representations of the generators ofSU(1, 1) naturally follows.



Energy eigenstates of C–S models 2133

Now note that both equations (10) and (16) are eigenvalue equations fork3. Thus, on comparing
these two equations, we have

|N ′,M ′〉 = eik2θM |N,M〉 eM ′ =
√

2α√−EM
(18)

or,

|N,M〉 = e−ik2θM |N ′,M ′〉 EM = − 2α2

(eM ′)2
. (19)

This establishes the mapping between the eigenvalues as well as the eigenfunctions ofHc and
Hsho. This also implies thatHc is exactly solvable providedHsho is so andvice versa. Since
this analysis is valid for anyV (x) satisfying equation (3), this means that we have found a class
of new, exactly solvable, many-body problems in one dimension. For example, theBN , CN ,
DN ,BCN CSM, with the harmonic oscillator potential replaced by the coulomb-like potential,
must also be exactly solvable many-body problems. As an illustration, the eigenvalues as well
as some of the eigenfunctions of theBN -model with coulomb-like potential have been worked
out in Appendix A.

The second relation in equation (18) as well as (19) describes the relationship between
the energy spectra of the two problems. The fact that this relationship is indeed valid is easily
checked by using equations (12) and (17) and identifyingm asm′. Since, the eigenvalueq
of the Casimir operator is independent of any particular representation of the generators (i.e.
equation (6) or (15)), it is expected that a comparison of the known energy spectra ofHc and
Hsho would in general relate different quantum numbers as well as parameters of a particular
theory to the another. We work out here some known examples to explore such relations.

(a) Let us first consider a simple example, i.e. consider the potentials

V (x) = gx−2 V (y) = g′y−2. (20)

The energy eigenvaluesEm ande′m for this choice ofV (x) andV (y) are given by

Em,k = − 1
2α

2(m + 1
2 + λk)

−2 em′,k′ = 2m′ + 1 +λ′k′ (21)

whereλk andλ′k′ are defined as

λk = [ 1
2(2k +N − 2) + 2g]1/2 λ′k′ = [ 1

2(2k
′ +N ′ − 2) + 2g′]1/2. (22)

One can easily see that equations (19)–(22) are consistent with each other provided the
following relations hold

N ′ = 2(N − 1) g′ = g

4
k′ = 2k m′ = m. (23)

We will see in the next section that the first two relations also follow from the coordinate
transformation.

(b) Consider the rational CSM (with SHO) ofAn type and the corresponding coulomb-like
problem [4]. In this case, the energy eigenvaluesEm,k andem′,k′ are given by

Em,k = − 1
2α

2[m + k + b + 1
2]−2 em′,k′ = 2m′ + k′ + b′ + 1 (24)

where 2b = (N−1)(1+λN)−1, 2b′ = (N ′−1)(1+λ′N ′)−1,g = λ(λ−1)andg′ = λ′(λ′−1).
Now observe that equations (19) and (24) are consistent with each other provided the first, the
third and the fourth relations of equation (23) are valid and, furthermore, the following relation
betweenλ andλ′ holds true:

λ′ = N

2N − 3
λ. (25)
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(c) Finally, consider the rational CSM ofBn type and the corresponding coulomb-like
problem (see appendix A). The energy eigenvaluesEm,k andem′,k′ corresponding to these two
cases are

Em,k = − 1
2α

2[m + 2k + b + 1
2]−2 em′,k′ = 2(m′ + k′) + b′ + 1 (26)

where 2b = (N−1)(1+2λN)+2λ1N−1 and 2b′ = (N ′ −1)(1+2λ′N ′)+2λ′1N
′ −1. Again,

it follows that equations (19) and (26) are consistent with each other provided the first, third
and the fourth relations of equations (23) are valid and, furthermore, the following relation
between theλ holds true:

λ′1 + (2N − 3)λ′ − λ1
N

N − 1
− λN = 0. (27)

Note that equation (27) is satisfied providedλ′1 = (N/(N−1))λ1 andλ andλ′ are related as in
the previous case, i.e. by equation (25). It may be noted here that for theDN caseλ1 = λ′1 = 0,
and hence in this case the relation (27) reduces to (25).

Summarizing, we find that for all types of CSM models in one dimension the mapping
between the oscillator and the coulomb-likeN -body problems holds good provided the first,
third and the last relations of equation (23) are valid. It is worth pointing out that the first
relation of equation (23) is also dictated by the coordinate transformation and is independent
of the particular from ofV (x), as will be seen in the next section. It is amusing to note that the
third and the fourth relations of equation (23) are also true for the usual SHO and the coulomb
problems [6]. Thus, these must be universal relations valid for anyV (x) since these relations
are also valid in the limit of vanishingV (x). Note, however, that the relation betweenλ and
λ′ is dependent on the particular form ofV (x). Finally, it seems that relation (25) is universal
in some sense for the mapping between the rational CSM of all types and the corresponding
coulomb-like problems.

3. Coordinate transformation

In this section, we will be discussing the explicit coordinate transformation relating the CSM
with the oscillator and the coulomb-like potentials. On comparing equations (6) and (15), we
have the following operator relations

x = 1

2
y2 (28)

N − 1

2
+
∑
i

xi
∂

∂xi
= 1

4

[
N ′ + 2

∑
µ

yµ
∂

∂yµ

]
(29)

x4x − 2xV ({xi}) = 1

2
[4y − 2V ({yµ})]. (30)

Let us now assume a coordinate transformation of the form

xi = fi({yµ}) (31)

where the fis are N arbitrary functions of the coordinatesyµ with the constraint√∑
i f

2
i = 1

2y
2. The particular form as well as the properties of all thefj will be determined

from equations (28)–(30). On multiplying both sides of equation (29) byxj from the right and
using relation (31), we encounter two different cases.

(a) N ′ = 2(N + 1)
∑
µ

yµ
∂fi

∂yµ
= 0. (32)
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However, the second relation of equation (32) implies that all thefi are homogeneous
functions of degree zero which is in direct contradiction with equation (28). Thus, this
possibility is ruled out.

(b) N ′ = 2(N + 1− d)
∑
µ

yµ
∂fi

∂yµ
= dfi. (33)

The second relation of equation (33) implies that all thefi are homogeneous functions
of degreed. However, it follows from equation (28) thatd must be 2 and hence the first
relation of (33) now reads

N ′ = 2(N − 1). (34)

Equation (34) establishes a relationship between the total number of particles in the two
cases. Notice that (34) also follows from a comparison of the eigenvalues in the two
cases (see (23). It is amusing to note that exactly the same relation is also obtained in
the case when one considers the mapping between the usualN -dimensional coulomb and
N ′-dimensional harmonic oscillator problems. In other words, (34) is independent of the
particular form of the many-particle potential.

On multiplying both sides of equation (30) byxj from the right and using relation (31)
we obtain

[4y − 2V ({yµ})]fi({yµ}) + 2y2V ({fj })fi({yµ}) = 0. (35)

This is a set of highly nonlinear second-order differential equations. Moreover, only those
solutions for which all thefi are homogeneous functions of degree 2 and the norm of thefi is

1√
2
y are acceptable solutions for our purpose.

One would now like to ask if such a solution (to (35)) exists or not. Note at this point that
for acceptable solutions the first term of (35) (i.e.Li = 4yfi) should either be a constant or
be a homogeneous function of degree zero. Let us first consider the caseLi = 0, i.e. those
solutions which are also solutions of theN ′-dimensional Laplace equation. With the use of
(35), this implies the following relation betweenV (x) andV (y),

V (x) = y−2V (y). (36)

In this case the operator relations (28)–(30) are identical to those in the case of the usualHsho

andHc problems. Now exactly following the procedure as given in Zenget al [6], we find one
valid coordinate transformation between the two problems as given by

xi = fi = 1

4

∑
α,β

0iαβyαyβ (37)

where the matrices0 constitute the Clifford algebra,

0i0j + 0j0i = 2δij . (38)

We might add here that the coordinate transformation (37) can be written down explicitly with
the use of the real representation of the Clifford algebra [8]. However, we have to determine
the form ofV (x) such that equation (36) is consistent with the coordinate transformations as
given by (37) and (38). One such choice isV (x) = 4gx−2 andV (y) = gy−2. We may add
here that unfortunately none of the inverse square interactions of the CSM satisfy (36).

Let us now consider the second possibility, i.e. all theLi are non-zero arbitrary constants.
In this case thexi are not independent of each other and no valid solution can be found. Thus,
it seems that theLi as homogeneous functions of degree zero is probably the only alternative
for finding an explicit coordinate transformation in the interesting case of the CSM. However,
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finding such solutions explicitly or even proving the existence of such solutions is a highly
non-trivial problem and at present we do not have any answer to this question.

Finally, as an aside, let us note that the mapping betweenHc andHsho as described by
equations (18) and (19) is valid even when the many-body interaction of the two problems
is not the same (i.e. they have a completely different functional dependence). However, both
should satisfy the homogeneity condition (3). In such cases let us denoteV (y) by Ṽ (y).
Now note that the coordinate transformation (37) can be identified as the required coordinate
transformation provided it relatesV (x) andṼ (y) as follows:

V (x) = y−2Ṽ (y) Ṽ (y) = 2xV (x). (39)

Thus, with each type of rational CSM one can associate a new many-body problem with
coulomb-like interaction which is related by the coordinate transformation (37). Similarly,
one can find new many-body Hamiltonians with oscillator confinement associated withHc. In
particular,Hc with V (x) given by (4) is related toHsho with Ṽ (y) given by

Ṽ (y) = 8gy2
∑
i<j

[∑
αβ

(0i − 0j )αβyαyβ
]−2

(40)

where(0i − 0j )αβ implies theαβ element of the matrix0i − 0j . Note that, for the real
representation of the Clifford algebra [8], some of the0’s are diagonal and, consequently, the
many-body interaction (40) is anN ′(= 2(N − 1))-body interaction unlike in the case of the
usual CSM. This type of new many-body Hamiltonian may or may not be interesting from the
physical point of view. However, they have the remarkable property of being exactly solvable.

4. The mapping: higher-dimensional generalization

In the last two sections we have established the mapping between the oscillator and
the coulomb-like problem in one-dimensional many-body systems. We now generalize
these results to higher-dimensional many-body systems with the many-body interactions as
homogeneous functions of degree−2. Recall at this point that the many-body interaction of
all the known higher-dimensional CSM type models is homogeneous with degree−2. For
example, the Calogero–Marchioro model [9], models with novel correlations [10], models
with two-body interactions [11] and models considered in [12, 13] have this property.

Let us consider the operatorsK1,K2 andK3 for the Coulomb-like problem as follows

K1 = 1

2
(X4X − 2XV (X) +X)

K2 = i

(
ND − 1

2
+
∑
i

Eri · EOi
)

K3 = −1

2
(X4X − 2XV (X)−X) (41)

where

X =
√∑

r2
i 4X =

∑
i

O2
i (42)

and EOi is theD-dimensional gradient of theith particle. The potentialV (X) is homogeneous
with degree−2 and satisfies the homogeneity condition analogous to equation (3). One can
check that these three operators constitute theSU(1, 1) algebra (7). The eigenequation of the
Hamiltonian

HD
c = −

1

2
4X + V (X)− α

X
(43)
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can be shown to be given by equation (10) withk2 and k3 replaced byK2 and K3,
respectively.

Similar to the one-dimensional oscillator problem, we define the three operators for the
D′-dimensional many-body problem with an oscillator potential as [12]

K1 = 1

4
(4Y + Y 2 − 2V (Y ))

K2 = i

4

(
N ′D′ + 2

∑
µ

Er ′µ · EO′µ
)

K3 = 1

2
HD′

sho=
1

4
(−4Y + Y 2 + 2V (Y )) (44)

where4Y andY 2 are given as

4Y =
∑
µ

O′2µ Y =
√∑

µ

r ′2i . (45)

We denoteO′µ as theD′-dimensional gradient operator for theµth particle. These three
operators satisfy theSU(1, 1) algebra (7) and the Hamiltonian is proportional toK3.

Following the discussions of section 2.3, one can establish the mapping between the
eigenvalues as well as the eigenvector ofHD

c and the same quantities ofHD′
sho. Equations (18)

and (19) continue to be valid in the higher-dimensional case also but withk2 replaced byK2.
In particular,

|N,D,M〉 = e−iK2θM |N ′,D′,M ′〉 EM = − 2α2

(eM ′)2
. (46)

An analysis of equations (41), (42), (44) and (45), on the lines of what has been done in the
previous section, shows that the relation

N ′D′ = 2(ND − 1) (47)

holds true for anyV (X). Note that this equation reduces to (34) forD = D′ = 1.
We would like to emphasize here that unlike the one-dimensional case, the higher-

dimensional many-body systems, like the Calogero–Marchioro model [9] or the models for
novel correlations [10], have part of the energy spectrum with a linear dependence and the
remaining part with a nonlinear dependence on the coupling constant of the relevant problem.
Unfortunately, so far, only the linear part of the spectrum has been obtained analytically for
all the known higher-dimensional many-body problem. In fact, not even one energy level with
nonlinear dependence on the coupling constant has been obtained as yet. Not surprisingly,
even using the underlyingSU(1, 1) symmetry of the Calogero–Marchioro problem, one cannot
find the missing nonlinear part [12]. This is because the angular part of the Hamiltonian or
equivalently the eigenvalue problem of the Casimir operator cannot be solved exactly in higher
dimensions. Thus, we are unable to compare the energy spectra ofHD

c andHD′
sho in higher

dimensions as has been done for the one-dimensional systems.

5. Summary

In this paper we have shown that the energy spectrum as well as the eigenfunctions of the
rational CSM with a Coulomb-like interaction associated with the root structure ofAN , BN ,
CN ,DN andBCN can be obtained from the corresponding CSM with the harmonic oscillator
potential. Consequently, all types of CSM with a coulomb-like interaction are also exactly
solvable models. Thus, one has added a new class of members to the family of exactly solvable
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many-body systems in one dimension. Furthermore, we have shown that all these results can
be generalized to other many-body systems in one dimension provided that the many-particle
interaction of these systems, much akin to the CSM, is a homogeneous function of degree
−2. We have explicitly found the coordinate transformation for some specific cases which
maps the coulomb-like problem to a harmonic one. Although we are not able to find the
coordinate transformation responsible for such a mapping for each and every case, we have
found a set of second-order coupled nonlinear differential equations and shown that a particular
class of solutions of this set of equations are going to determine the coordinate transformation.
However, the proof of the existence of such a class of solutions and, if possible, how to find
them explicitly is a highly non-trivial problem.

Acknowledgment

One of us (PKG) would like to thank the Institute of Physics, Bhubaneswar, where part of the
work has been carried out.

Appendix A. BN CSM with coulomb-like potential

In this appendix we obtain the spectrum as well as the eigenfunctions of theBn type CSM with
coulomb-like potential. In particular, we consider the Hamiltonian (1) withV (x) given by (5)
andg1 = λ(λ− 1), g2 = λ1(λ1− 1) andg3 = 0. Note that the energy eigenstates of theBCN
as well as theCN CSM could be obtained easily from the known results of theBN CSM. Let

8 =
∏
l

x
λ1
l

∏
i<j

(x2
i − x2

j )
λP2k(x)φ(x) (A1)

be a solution of the Schrödinger equationHc8 = E8. In equation (A1),P2k(x) is a symmetric
homogeneous polynomial of the coordinates with degree 2k and satisfies the generalized
Laplace equation,

4xP2k(x) + 2λ1

∑
i

x−1
i

∂P2k

∂xi
+ 4λ

∑
i 6=j

xi

x2
i − x2

j

∂P2k

∂xi
= 0. (A2)

Plugging the expression (A1) into the Schrödinger equation, we have

φ′′ + [2b + 4k + 1]
φ′

x
+ 2

(
E +

α

x

)
φ = 0 (A3)

where the parameterb is given by

b = 1
2(N − 1)(1 + 2λN)− 1

2 + λ1N. (A4)

Defining a new variablet = √2Ex, equation (A3) can be solved as

φn,k = exp(−t)L2b+4k
n (2t) (A5)

whereL2b+4k
n (2t) is the Laguerre polynomial with argument 2t . The energy eigenvalues

corresponding to the wavefunctions (A1) are

En,k = − 1
2α

2[n + 2k + 1
2 + b]−2. (A6)

It may be noted here that the results for theDN case can be obtained from here simply by
puttingλ1 = 0.

The wavefunction given by (A1) contains a homogeneous functionP2k of degree 2k
which is determined by equation (A2). In general, we do not know the exact solutions of
equation (A2) except for some small values ofN and k. However, it can be shown that
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equation (A2) is exactly solvable by following the methods described in Brinket al [14]. In
fact, apart from some constant, the corresponding equation in [14] contains one more extra
term

∑
i xi∂/∂xi than (A2) and the treatment as well as conclusions obtained there are also

valid in the case of equation (A2).

Appendix B. Casimir operator and separation of variables

In this appendix we study the role of the Casimir operator of theSU(1, 1) group regarding the
separation of variables in the case of the Schrödinger equation forHc andHsho. The Casimir
operator ofSU(1, 1) for the class of unitary irreducible representations, called the positive
discrete series, is defined by [7, 12]

C = k2
3 − k2

1 − k2
2 (B1)

and it commutes with all the generatorsk1, k2 andk3. The Casimir operator andk3 are diagonal
in this representation and the eigenvalue ofk3 is given by

ε± = n + 1
2 ± (q + 1

4)
1/2 (B2)

wheren is a non-negative integer andq is the eigenvalue of the Casimir operator.ε− has the
restriction(q + 1

4)
1/2 < 1

2 and it leads to physically unacceptable solutions [12]. Thus, we will
be concerned withε+ only in this paper.

We use the notationCxN andCyN ′ for the Casimir operators associated with the generators
of SU(1, 1) given by two different representations (6) and (15), respectively. Plugging (6) and
(15) into (B1) and after some manipulation [12], we find

CxN =
1

4
(N − 1)(N − 3) + 2x2V (x)−

∑
i<k

(
xi
∂

∂xk
− xk ∂

∂xi

)2

C
y

N ′ =
1

16
N ′(N ′ − 4) +

1

2
y2V (y)− 1

4

∑
µ<ν

(
yν

∂

∂yµ
− yµ ∂

∂yν

)2

. (B3)

Now sinceV (x) is homogeneous with degree−2, hencex2V (x) can be expressed purely
in terms of theN − 1 angular variables inN -dimensional spherical coordinates. Similarly,
y2V (y) is determined solely in terms of theN ′−1 angular variables ofN ′-dimensional spherical
coordinates. Thus, apart from a constant factor, bothCxN andCyN ′ are exactly equivalent to the
angular part of the respective HamiltoniansHc andHsho. In particular, the angular part of the
HamiltoniansHc andHsho is given by

Ha
c = CxN − 1

4(N − 1)(N − 3) Ha
sho= CyN ′ − 1

16N
′(N ′ − 4). (B4)

Furthermore, the constant factor ofCxN is related to the constant factor ofCyN ′ by (34). It may
be noted here that the total angular momentaL2 andL′2,

L2 = −
∑
i<k

(
xi
∂

∂xk
− xk ∂

∂xi

)2

L′2 = −
∑
µ<ν

(
yν

∂

∂yµ
− yµ ∂

∂yν

)2

(B5)

of Hc andHsho, respectively, are also related to each other as

L′2 = 4L2 l′ = 2l (B6)

in the case when relation (36) is satisfied. In equation (B6),l andl′ denote the eigenvalues of
L andL′, respectively. This result is also valid in the case when one starts withṼ (y) instead
of V (y) in Hsho and relation (39) holds true.

Following Gambardella [12], it is easily seen that the relation [C, k3] = 0 implies

[Hr
c , H

a
c ] = 0 [Hr

sho, H
a
sho] = 0 (B7)
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whereHr
c andHr

shoare the radial part of theN -dimensional conventional coulomb problem and
theN ′-dimensional conventional oscillator problems, respectively. We have used the relation

k3 = α + 1
2x + xHc (B8)

in order to derive the first equation of (B7). The relations (B7) imply that the method of
separation of variables is applicable to bothHc andHsho. This relation forHsho in arbitrary
dimensions was known earlier [12], while we have generalized this result to the case ofHc.
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